
Sand Blast
More than just the golf

ball was put into motion

by Lee Trevino’s swing.

The upward swing of the

golf club propels the

sand along an upwardly

curving path. How

would you describe the

motion of the sand? 

➥ Look at the text 
on page 158 for 
the answer.



I
f you could observe the movement of a golf ball as it leaves
a sand trap, you would see that it follows a path similar to
that of the sand. All kinds of objects move through the air

along a similar path. The flights of baseballs, basketballs, arrows,
bullets, and rockets all follow similar courses. The path is a 
curve that moves upward for a distance, then turns, and moves
downward. You may be familiar with this curve, called a parabola,
from your math class.

Think back to your study of Newton’s laws.

• An object that is at rest will remain at rest, or an object 
that is moving will continue to move in a straight line with
constant speed, if and only if the net force acting on that
object is zero.

• The acceleration of an object is directly proportional to the
net force on it and inversely proportional to its mass.

• Forces between two objects always come in pairs.

Can Newton’s laws of motion describe the motion of the sand
and the golf ball? Both the sand and the golf ball move in a 
horizontal direction, as well as a vertical direction, making the
description more complex. 

However, with your knowledge of vectors and Newton’s laws,
you will soon be able to predict how high the golf ball will rise
above the ground, how long it will remain in the air, how fast it
will be moving the instant before it hits the ground, and where it
will land. The very same principles are used by scientists to deter-
mine how high a rocket will soar, how far it will travel, and where
it will land. You will find that the same equations you used for
solving motion problems in one dimension can be applied to the
solution of problems in two dimensions. 

Forces and
Motion in Two
Dimensions

WHAT YOU’LL LEARN
• You will use Newton’s laws

and your knowledge of 
vectors to analyze motion 
in two dimensions.

• You will solve problems
dealing with projectile and
circular motion, and demon-
strate your understanding of
acceleration and torque.

WHY IT’S IMPORTANT
• The worldwide space 

program depends funda-
mentally on the application
of Newton’s laws to the
launching of space vehicles
and their guidance into 
stable orbits.
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You already know one example of forces in
two dimensions. When friction acts between

two surfaces, you must take into account both
the friction force that is parallel to the surface, and the normal force per-
pendicular to it. So far, you have considered only motion along the surface.
Now you will use your skill in adding vectors to analyze two situations in
which the forces on an object are at angles other than 90°.

Equilibrium and the Equilibrant
An object is in equilibrium when the net force on it is zero. When in

equilibrium, an object is motionless or moves with constant velocity.
According to Newton’s laws, the object will not be accelerated because
there is no net force on it. You have already added two force vectors to
find that the net force is zero. Equilibrium also occurs when the resul-
tant of three or more forces equals a net force of zero.

Figure 7-1a shows three forces exerted on a point object. What is the
sum of A, B, and C, or what is the net force on the object? Remember
that vectors may be moved if you don’t change their direction (angle) or
length. Figure 7-1b shows the addition of the three forces, A, B, and C.
Note that the three vectors form a closed triangle. There is no net force
so the sum is zero and the object is in equilibrium.

Suppose two forces are exerted on an object and the sum is not zero.
How could you find a third force that, when added to the other two,
would add up to zero? Such a force, one that produces equilibrium, is
called the equilibrant.

To find the equilibrant, first find the sum of the two forces exerted on
the object. This sum is the resultant force, R, the single force that would
produce the same effect as the two individual forces added together. The
equilibrant is thus a force with a magnitude equal to the resultant, but
in the opposite direction. Figure 7-2 illustrates this procedure for two
vectors, but any number of vectors could be used.

OBJ ECTIVES
• Determine the force that

produces equilibrium when
three forces act on an
object.

• Analyze the motion of an
object on an inclined plane
with and without friction.

7.1 Forces in Two 
Dimensions
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FIGURE 7–1 An object is in
equilibrium when all the forces
on it add up to zero.

FIGURE 7–2 The equilibrant is
the same magnitude as the resul-
tant but opposite in direction.
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Creating Equilibrium
A 168-N sign is supported in a motionless position by two

ropes that each make 22.5° angles with the horizontal. What
is the tension in the ropes?

Sketch the Problem
• Draw the ropes at equal angles and establish a coordinate system.
• Draw the free-body diagram with the dot at the origin. 

Calculate Your Answer
Known:

� � 22.5°

Fg � 168 N

Unknown:

FA� ?

FB� ?
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Check Your Answer
• Is the unit correct? N is the only unit in the calculation.
• Do the signs make sense? Yes, the tension forces are in the posi-

tive y-direction.
• Is the magnitude realistic? It is greater than the weight of the sign,

which is reasonable, because only the small vertical components
of FA and FB are available to balance the sign’s weight.

1. The sign from the preceding example problem is now hung by 
ropes that each make an angle of 42° with the horizontal. What 
force does each rope exert?

2. An 8.0-N weight has one horizontal rope exerting a force of 
6.0 N on it.
a. What are the magnitude and direction of the resultant force on 

the weight?
b. What force (magnitude and direction) is needed to put the 

weight into equilibrium?

Sign
+x

+x

FBFA

Fg

+y

+y

�

�

�

�

Calculations:

Fnet,x � 0, thus �FAx � FBx � 0

�FAcos � � FBcos � � 0

so, FA � FB

Fnet,y � 0, thus FAy � FBy � Fg � 0

FA sin � � FB sin � � Fg � 0

2FA sin � � Fg

FA � �
2 sin

F

2
g

2.5º
� � �

2 �

16

0

8

.3

N

83
�

FA � 2.20 � 102 N

Strategy:

The sum of the two
rope forces and the
downward weight force
is zero. Write equa-
tions for equilibrium
in the x-direction and
in the y-direction.

Math Handbook

To review trigonometric
ratios, see the Math 
Handbook, Appendix A,
page 745.

Example Problem

Practice Problems

Continued on next page



3. Two ropes pull on a ring. One exerts a 62-N force at 30.0°, the
other a 62-N force at 60.0°
a. What is the net force on the ring?
b. What are the magnitude and direction of the force that would

cause the ring to be in equilibrium?
4. Two forces are exerted on an object. A 36-N force acts at 225°

and a 48-N force acts at 315°. What are the magnitude and 
direction of the equilibrant?

Motion Along an Inclined Plane
The gravitational force is directed toward the center of Earth, in the

downward direction. But if a vehicle such as the one in Figure 7–3 is
on a hill, there is a normal force perpendicular to the hill, and the
forces of friction that will either speed up or slow down the car are par-
allel to the hill. What strategy should you use to find the net force that
causes the car to accelerate? The most important decision to be made is
what coordinate system to use.

Because the direction of the vehicle’s velocity and acceleration will 
be parallel to the hill, one axis, usually the x-axis, should be in that
direction. The y-axis is, as usual, perpendicular to the x-axis and per-
pendicular, or normal, to the surface of the hill.

For such a coordinate system, the normal and friction forces are both
in the direction of a coordinate axis, but the weight is not. In most prob-
lems, you’ll have to find the x- and y-components of this force.
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Components of Weight for an Object on an Incline
A trunk weighing 562 N is resting on a plane inclined 30.0°

above the horizontal. Find the components of the weight force
parallel and perpendicular to the plane.

Sketch the Problem
• Include a coordinate system with the 

positive x-axis pointing uphill.
• Draw the free-body diagram showing Fg, 

the components Fgx and Fgy, and the angle �.

Calculate Your Answer
Known: Unknown:

Fg � 562 N Fgx � ?

� � 30.0° Fgy � ?

Fgy

Fg

Fgx
+x

+x
+y

+y

�

�

FIGURE 7–3 If the x-axis is 
chosen to be parallel to the road,
F f and F N are parallel to the 
x- and y-axes respectively, but 
F g points in the direction of the
center of Earth as shown.

Example Problem
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Skiing Downhill
A 62-kg person on skis is going down a hill sloped at 37°. The

coefficient of kinetic friction between the skis and the snow is 0.15.
How fast is the skier going 5.0 s after starting from rest?

Sketch the Problem
• Circle the system and identify points of contact. 
• Establish a coordinate system.
• Draw a free-body diagram.
• Draw a motion diagram showing increasing v,

and both a and Fnet in the �x direction.

Calculate Your Answer

Strategy:

There is no acceleration in the 
y-direction, so the net force is zero. 
Solve for FN.

Apply Newton’s second law of
motion to relate acceleration to the
downhill force. Solve for a by
substituting µkFN for Ff.

Use velocity-acceleration 
relation to find speed.

Strategy:

Fgx and Fgy are negative because they point
in directions opposite to the positive axes.

Vector components are scalars, but they 
have signs indicating their direction 
relative to the axes.

Calculations:

Fgx � �Fg sin �

Fgx � �(562 N) sin 30.0° � �281 N

Fgy � �Fg cos �

Fgy � �(562 N) cos 30.0° � �487 N

Known: Unknown:

m � 62 kg �k � 0.15 t � 5.0 s a � ?

� � 37° v0 � 0.0 m/s v � ?

Calculations:

y-direction: x-direction: 
Fnet,y � may � 0 Fnet,x � max � ma

FN � Fgy � 0 Fgx � Ff � ma

FN � Fgy � mg cos � ma � mg sin � � µkFN

ma � mg sin � � µkmg cos �

a � g(sin � � µk cos �)

a � 9.80 m/s2(sin 37° � 0.15 cos 37°) � 4.7 m/s2

v � v0 � at

v � 0 � (4.7 m/s2) (5.0s) � 24 m/s

Check Your Answer
• Are the units correct? Only newtons appears in the calculations.
• Do the signs make sense? Yes, the components point in

directions opposite to the positive axes.
• Are the magnitudes realistic? The values are less than Fg.

Example Problem

Continued on next page

v

a

FnetBegin

End

+x

+y

System
Contact with
environment

�

+y

+xFf

FN

Fg

�



Section Review7.1
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Check Your Answer
• Are the units correct? Performing algebra on the units verifies

that v is in m/s and a is in m/s2.
• Do the signs make sense? Yes, because v and a are both in the 

� x direction.
• Are the magnitudes reasonable? The velocity is fast, over 50 mph,

but 37° is a steep incline, and the friction with snow is not large.

5. Consider the trunk on the incline in the Example Problem. 
a. Calculate the magnitude of the acceleration.
b. After 4.00 s, how fast would the trunk be moving?

6. For the Example Problem Skiing Downhill, find the x- and 
y-components of the weight of the skier going downhill.

7. If the skier were on a 30° downhill slope, what would be the
magnitude of the acceleration?

8. After the skier on the 37° hill had been moving for 5.0 s, the
friction of the snow suddenly increased making the net force 
on the skier zero. What is the new coefficient of friction? How
fast would the skier now be going after skiing for 5.0 s?

1. You are to hang a painting using two
lengths of wire. The wires will break
if the force on them is too great.
Should the painting look like 
Figure 7–4a or b? Explain.

2. One way to get a car unstuck is to tie
one end of a strong rope to the car
and the other end to a tree. Then
push the rope at its midpoint at right
angles to the rope. Draw a free-body
diagram and explain why even a
small force on the rope can exert 
a large force on the car.

3. The skier in the Example Problem
finishes the downhill run, turns, and
continues to slide uphill for a time.
Draw the free-body diagram for the
uphill slide. In which direction is the
net force?

4. Critical Thinking Can the coefficient
of friction ever have a value such 
that a skier could slide uphill at a
constant velocity? Explain.

FIGURE 7–4

a

b

Practice Problems



Aprojectile can be a football, a bullet, or a drop 
of water. No matter what the object is, after a

projectile has been given an initial thrust, ignor-
ing air resistance, it moves through the air only

under the force of gravity. Its path through space is called its trajectory. If
you know the force of the initial thrust on a projectile, you can figure out
its trajectory.

Independence of Motion in Two Dimensions
After a golf ball leaves the golf club, what forces are exerted on the

ball? If you ignore air resistance, there are no other contact forces on the
golf ball. There is only the long-range force of gravity in the downward
direction. How does this affect the ball’s motion?

Figure 7–5 shows the trajectories of two golf balls. One was dropped,
and the other was given an initial horizontal velocity of 2.0 m/s. What
is similar about the two paths?

Look at the vertical positions of the balls. At each flash, the heights of
the two balls are the same. Because the change in vertical position is the
same for both balls, their average vertical velocities during each interval
are the same. The increasingly large distances traveled vertically by the
two balls, from one time interval to the next, show that the balls are
accelerated downward by the force of gravity. Notice that the horizontal
motion of the launched ball doesn’t affect its vertical motion. A projec-
tile launched horizontally has no initial vertical velocity. Therefore, its
vertical motion is like that of a dropped object.

Projectile Motion

OBJ ECTIVES
• Recognize that the vertical

and horizontal motions of a
projectile are independent.

• Relate the height, time in
the air, and initial vertical
velocity of a projectile using
its vertical motion, then
determine the range.

• Explain how the shape of
the trajectory of a moving
object depends upon the
frame of reference from
which it is observed.

7.2
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FIGURE 7–5 The ball on the right
was given a horizontal velocity;
the ball on the left was dropped.
The balls were photographed
using a strobe light that flashed
30 times each second. Note that
the vertical positions of the two
balls are the same at each flash
of the strobe light.



Begin

End

End
vx

ax = 0

vy

ay
+y

+x

Begin

End

Separate motion diagrams for the horizontal and vertical motions are
shown in Figure 7–6a. The vertical motion diagram represents the
motion of the dropped ball. The horizontal motion diagram shows the
constant velocity in the x-direction of the launched ball.

In Figure 7–6b, the horizontal and vertical components are added to
form the velocity vector for the projectile. You can see how the combi-
nation of constant horizontal velocity and uniform vertical acceleration
produces a trajectory that has the shape of the mathematical curve
called the parabola.

Projectile Motion
1. Motion in two dimensions can be solved by breaking the

problem into two interconnected one-dimensional problems.
For instance, projectile motion can be divided into a vertical
motion problem and a horizontal motion problem.

2. The vertical motion of a projectile is exactly that of an object
dropped or thrown straight up or down. A gravitational force
acts on the object accelerating it by an amount g. Review
Section 5.4 on Free Fall to refresh your problem solving skills
for vertical motion.

3. Analyzing the horizontal motion of a projectile is the same as
solving a constant velocity problem. A projectile has no thrust
force and air drag is neglected, consequently there are no
forces acting in the horizontal direction and thus, no acceler-
ation, a � 0. To solve, use the same methods you learned in
Section 5.1, Uniform Motion.

4. Vertical motion and horizontal motion are connected through
the variable time. The time from the launch of the projectile
to the time it hits the target is the same for vertical motion
and for horizontal motion. Therefore, solving for time in one
of the dimensions, vertical or horizontal, automatically gives
you the time for the other dimension.
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FIGURE 7–6 When the horizon-
tal and vertical components of
the ball’s velocity are combined
in b, the resultant vectors are
tangent to a parabola.

a b

Pocket Lab
Over the Edge

Obtain two balls, one twice the
mass of the other. Predict which
ball will hit the floor first when
you roll them over the surface
of a table with the same speed
and let them roll off. Predict
which ball will hit the floor 
farther from the table. Explain
your predictions.
Analyze and Conclude
Does the mass of the ball 
affect its motion? Is mass a 
factor in any of the equations
for projectile motion?



Projectiles Launched Horizontally
A projectile launched horizontally has no initial vertical velocity.

Therefore, its vertical motion is identical to that of a dropped object.
The downward velocity increases regularly because of the acceleration
due to gravity.
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A Projectile Launched Horizontally
A stone is thrown horizontally at 15 m/s from the top of a cliff 44 m high. 

a. How far from the base of the cliff does the stone hit the ground? 

b. How fast is it moving the instant before it hits the ground?

Sketch the Problem
• Establish a coordinate system with the 

launch point labeled “begin”at the origin.
• The point to be labeled “end” is at y = �44 m; 

x is unknown.
• Draw a motion diagram for the trajectory showing 

the downward acceleration and net force.

Calculate Your Answer
Known: Unknown:
x0 � 0 x when y � �44 m
vx0 � 15 m/s v at that time
y0 � 0
vy0 � 0
a � �g

Strategy:

a. Use the equation for the y-position to get
and solve an equation for the time the
stone is in the air.

Calculations:

y-direction: 

vy � �gt

y � y0 � 1/2gt2

t � ��
�2(y

g�� y0)
�� � ��

�

g

2y
��

� ��
�

9

2

.8

(�

0� 4

m

4

/s

m
2

)
�� � 3.0 s

b. Velocity is a vector quantity; find the two
components, then the magnitude, or speed.
Use the Pythagorean relationship to find v.

v

a

v0

+x+y

y = –44 m 

Fg = Fnet

vx

vvy

Begin

Begin

End

End

Example Problem

x-direction:

x � x0 � vx0t

x � (15 m/s)(3.0 s) � 45 m from the base

vy � �gt

vy � �(9.80 m/s2)(3.0 s) � �29 m/s

v � �vx
2 ��vy

2�
v � �(15 m�/s)2 �� (�29� m/s)2� � 33 m/s

Continued on next page



BIOLOGY
CONNECTION

Launch Angle Have
you ever watched a 
frog jump? The launch
angle of a frog’s jump 
is approximately 45°.
Jumping at this angle 
is innate behavior that
helps the frog cover
maximum distance on
flat ground. 

Projectiles Launched at an Angle
When a projectile is launched at an angle, the initial velocity has a

vertical component as well as a horizontal component. If the object is
launched upward, then it rises with slowing speed, reaches the top of its
path, and descends with increasing speed. This is what happens to the
sand in the photo at the beginning of this chapter. Figure 7–7a shows
the separate vertical and horizontal motion diagrams for the trajectory.
The coordinate system is chosen with �x horizontal and �y vertical.
Note the symmetry. At each point in the vertical direction, the velocity
of the object as it is moving up has the same magnitude as when it is
moving down, but the directions of the two velocities are opposite.

Figure 7–7b defines two quantities associated with the trajectory. One
is the maximum height, which is the height of the projectile when the
vertical velocity is zero and the projectile has only its horizontal velocity
component. The other quantity depicted is the range, R, which is the
horizontal distance the projectile travels. Not shown is the flight time,
which is the time the projectile is in the air. In the game of football, flight
time is usually called hang time.

Check Your Answer
• Are the units correct? Performing algebra on the units verifies that

x is in m and v is in m/s.
• Do the signs make sense? Both x and v should be positive.
• Are the magnitudes realistic? The projectile is in the air 3.0 s. The

horizontal distance is about the same magnitude as the vertical dis-
tance. The final velocity is larger than the initial horizontal velocity
but of the same order of magnitude.
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9. A stone is thrown horizontally at a speed of 5.0 m/s from the
top of a cliff 78.4 m high.
a. How long does it take the stone to reach the bottom of the cliff?
b. How far from the base of the cliff does the stone hit the ground?
c. What are the horizontal and vertical components of the

stone’s velocity just before it hits the ground?
10. How would the three answers to problem 9 change if

a. the stone were thrown with twice the horizontal speed?
b. the stone were thrown with the same speed, but the cliff

were twice as high?
11. A steel ball rolls with constant velocity across a tabletop

0.950 m high. It rolls off and hits the ground 0.352 m from
the edge of the table. How fast was the ball rolling?

Practice Problems

Sand Blast
➥ Answers question from

page 148.
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The Flight of a Ball
The ball in the strobe photo was launched with an initial velocity of

4.47 m/s at an angle of 66º above the horizontal.

a. What was the maximum height the ball attained? 

b. How long did it take the ball to return to the launching height? 

c. What was its range?

Sketch the Problem
• Establish a coordinate system. One choice for the initial

position of the ball is at the origin.
• Show the positions of the ball at maximum height 

and at the end of the flight.
• Draw a motion diagram showing the v, a, and Fnet.

Calculate Your Answer
Known: Unknown:

x0 � 0 y, when vy � 0

y0 � 0 t � ?

v0 � 4.47 m/s x, when y � 0

�0� 66°

a � �g

Strategy:

a. Write the equations for the initial velocity components, the velocity
components at time t, and the position in both directions. The ver-
tical velocity is zero when the ball reaches maximum height. Solve
the velocity equation for the time of maximum height. Substitute
this time into the vertical-position equation to find the height.

b. Solve the vertical-position equation for the time of the end of the
flight, when y = 0.

c. Substitute that time into the equation for horizontal distance to get
the range.

v
a

v0

0

ymax

R

+y

+x

Fg = Fnet

vy0 v0

vx0

Begin
End�

vx
ax = 0

vy

ay

+y

+x

ay

0

Begin EndRange, R

Maximum
height

�

FIGURE 7–7 The vector sum of
vx and vy, at each position, points

in the direction of the flight.

a b

Example Problem

Continued on next page



Calculations:

y-direction:

vy0 � v0 sin �0

vy0 � (4.47 m/s)sin 66°

vy0 � 4.08 m/s

vy � vy0 � gt

y � y0 � vy0t � 1/2gt2

x-direction:

vx0 � v0 cos �0

vx � vx0

x � x0 � vx0t
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Check Your Answer
• Are the units correct? Performing algebra on the units verifies that

time is in s, velocity is in m/s, and distance is in m.
• Do the signs make sense? All should be positive.
• Are the magnitudes realistic? Compare them with those in the 

photo. The calculated flight time is 0.833 s. At 30 flashes/s, this
would be 25 flashes, and 25 are visible. The scale of the photo is
unknown, as it is, but the ratio of the maximum height to range is
(0.849 m)/(1.51 m), or 0.562/1, in the photo.

12. A player kicks a football from ground level with an initial 
velocity of 27.0 m/s, 30.0° above the horizontal, as shown in
Figure 7–8. Find the ball’s hang time, range, and maximum
height. Assume air resistance is negligible.

13. The player then kicks the ball with the same speed, but at 60.0°
from the horizontal. What is the ball’s hang time, range, and
maximum height?

25

y 
(m

et
er

s)

x (meters)

Trajectory

60 
0
0

60°

30°

a. When vy � 0, t � vy0/g

t � (4.08 m/s)/(9.80 m/s2)

t � 0.416 s

ymax � vy0t � 1/2gt2

ymax � (4.08 m/s)(0.416 s) � 1/2(9.80 m/s2)(0.416 s)2 � 0.849 m

b. At landing, y � 0 c. At this time, x � R, the range

0 � 0 � vy0t � 1/2gt2 R � vx0t

t � 2vy0/g � (4.47 m/s)(cos 66°)(0.833 s)

� 2(4.08 m/s)/(9.80 m/s2) � 1.51 m

� 0.833 s

FIGURE 7–8

Practice Problems



Trajectories Depend upon 
the Frame of Reference

Suppose you toss a ball up and catch it while riding in a bus. To you,
the ball would seem to go straight up and down. But what would an
observer on the sidewalk see? The observer would see the ball leave your
hand, rise up, and return to your hand, but because the bus would be
moving, your hand also would be moving. The bus, your hand, and the
ball would all have the same horizontal velocity. Thus, the trajectory of
the ball would be similar to that of the ball in the previous Example
Problem. Although you and the observer would disagree on the hori-
zontal motion of the ball, you would agree on the vertical motion. You
would both find the vertical velocity, displacement, and time in the air
to be the same. 

Effects of Air Resistance
The force of air, or air resistance, has been ignored in the analysis of

the motion of a projectile, but that doesn’t mean that air resistance is
unimportant. It’s true that for some projectiles, the effect is very small.
But for others, the effects are large and very complex. For example, the
shape and pattern of dimples on a golf ball have been carefully designed
to maximize its range. In baseball, the spin of the ball creates forces that
can deflect the ball up, down, or to either side. If the spin is very slow, as
in a knuckleball, the interaction of the laces with the air results in a very
unpredictable trajectory. Rings, disks, and boomerangs generate enough
upward force, or lift, from the air that they seem to float through the air.

1617.2 Projectile Motion

Section Review
1. Two baseballs are pitched horizontally

from the same height but at different
speeds. The faster ball crosses home
plate within the strike zone, but the
slower ball is below the batter’s knees.
Why does the faster ball not fall as far
as the slower one?

2. An ice cube slides without friction
across a table at constant velocity. It
slides off and lands on the floor. Draw
free-body diagrams of the cube at 
two points while it is on the table and
at two points when it is in the air.

3. For the same ice cube, draw motion
diagrams showing the velocity and
acceleration of the ice cube both
when it is on the table and in the air.

4. Critical Thinking Suppose an object is
thrown with the same initial velocity
and direction on Earth and on the
moon, where g is 1/6 as large as it is
on Earth. Will the following quanti-
ties change? If so, will they become
larger or smaller?
a. vx c. maximum height
b. time of flight d. range

7.2

Pocket Lab
Where the Ball
Bounces

Place a golf ball in your hand
and extend your arm sideways
so that the ball is at shoulder
height. Drop the ball and have
a lab partner start a stopwatch
when the ball strikes the floor
and stop it the next time the
ball strikes the floor. Predict
where the ball will hit when you
walk at a steady speed and
drop the ball. Would the ball
take the same time to bounce?
Try it.
Analyze and Conclude Where
does the ball hit? Does it take
more time?



The Softball Throw
Problem

What advice can you give the center fielder
on your softball team on how to throw the
ball to the catcher at home plate so that it
gets there before the runner?

Hypothesis
Formulate a hypothesis using what you know
about the horizontal and vertical motion of a
projectile to advise the center fielder about
how to throw the ball. Consider the factors
that affect the time it will take for the ball to
arrive at home plate.

Possible Materials
stopwatch
softball
football field or large open area with 

premeasured distances

Plan the Experiment
1. As a group, determine the variable(s) you

want to measure. How do horizontal and
vertical velocity affect the range?

2. Who will time the throws? How will you
determine the range? Will the range be a
constant or a variable? How many trials
will you complete? 

3. Construct a table or spreadsheet for
recording data from all the trial throws.
Record all your calculations in the table.

4. Check the Plan Make sure your 
teacher approves your final plan before
you proceed.

Analyze and Conclude
1. Analyzing Data How can your data be

used to determine values for vx and vy?

2. Diagramming the Results Draw a 
diagram that shows the relationship
between R, vx, vy, and v0.

3. Calculating Results Determine the 
initial values for vx and vy. Use the
Pythagorean theorem to find the value 
of the initial velocity, v0, for each trial.

4. Analyzing Data Was the range of each
person’s throw about the same? Did the
initial velocity of the throws vary?

5. Analyzing Data Analyze and evaluate
the trends in your data. How did the angle
at which the ball was thrown affect the
range? The time?

6. Checking Your Hypothesis Should the
center fielder throw the ball to the catcher
at home plate with a larger vx or vy?

Apply
1. Infer from the trends in your data why a

kickoff in a football game might be made
at a different angle than a punt.
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Data and Observations
Range (R) Time (t) Horizontal Vertical Initial
(meters) (seconds) Velocity Velocity Velocity

(vx) (m/s) (vy ) (m/s) (v0) (m/s)

Trial 1

Trial 2 



Can an object be accelerated if its speed
remains constant? Yes, because velocity is a

vector quantity; just as a change in speed means
that there is a change in velocity, so too does a

change in direction indicate a change in velocity. Consider an object
moving in a circle at constant speed. Figure 7–9 shows a person riding
on a merry-go-round moving at a steady speed. That person is in 
uniform circular motion. So is a sock among the clothes spinning in a
washing machine. Uniform circular motion is the movement of an object
or point mass at constant speed around a circle with a fixed radius.

Describing Circular Motion
An object’s position relative to the center of the circle is given by the

position vector r, shown in Figure 7–10a. As the object moves around
the circle, the length of the position vector doesn’t change, but its direc-
tion does. To find the object’s velocity, you need to find its displacement
vector over a time interval. The change in position, or the object’s dis-
placement, is represented by �r. Figure 7–10b shows two position vec-
tors, r1 at the beginning of a time interval, and r2 at the end of the time
interval. In the vector diagram, r1 and r2 are subtracted to give the resul-
tant �r, the displacement during the time interval. Recall that a moving
object’s average velocity is �d/�t, so for an object in circular motion 
v� = �r/�t. The velocity vector has the same direction as the displacement
but a different length. You can see in Figure 7–10a that the velocity is
at right angles to the position vector and tangent to its circular path. As
the velocity vector moves around the circle, its direction changes but its
length remains the same.

What is the direction of the object’s acceleration? Figure 7–11a
shows the velocity vectors v1 and v2 at the beginning and end of a time
interval. The difference in the two vectors, �v, is found by subtracting
the vectors, as shown in Figure 7–11b. The acceleration, a = �v/�t, is in
the same direction as �v, that is, toward the center of the circle. As the

Circular Motion

OBJ ECTIVES
• Explain the acceleration of

an object moving in a circle
at constant speed.

• Describe how centripetal
acceleration depends upon
the object’s speed and the
radius of the circle.

• Recognize the direction of
the force that causes cen-
tripetal acceleration.

• Explain how the rate of 
circular motion is changed
by exerting torque on it.

7.3
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v1

v2

r1

r2

∆r
r1

r2

FIGURE 7–9 The rider is in 
uniform circular motion.

FIGURE 7–10 The displacement,
�r, of an object in circular motion,
divided by the time interval in
which the displacement occurs, is
the object’s average velocity.a b



object moves around the circle, the direction of the acceleration vector
changes, but its length remains the same. The acceleration of an object in
uniform circular motion always points in toward the center of the circle,
and for that reason it is called center-seeking or centripetal acceleration.

Centripetal Acceleration
What is the magnitude of the centripetal acceleration? Compare the

triangle made from the position vectors in Figure 7–10b with the tri-
angle made by the velocity vectors in Figure 7–11b. The angle between
r1 and r2 is the same as that between v1 and v2. Therefore, the two tri-
angles formed by subtracting the two sets of vectors are similar triangles,
and the ratios of the lengths of two corresponding sides are equal. Thus,
�r/r � �v/v. The equation is not changed if both sides are divided by �t.

�
r

�

�

r

t
� � �

v

�

�

v

t
�

But v � �r/�t and a � �v/�t. Substituting these expressions, the fol-
lowing equation is obtained.

�
v

r
� � �

a

v
�

Solve this equation for the acceleration and give it the special symbol
ac for centripetal acceleration.

Centripetal Acceleration (using velocity) ac � �
v

r

2
�

Centripetal acceleration always points toward the center of the circular
motion.

How can you measure the speed of an object moving in a circle? One
way is to measure its period, T, the time needed for the object to make
a complete revolution. During this time, it travels a distance equal to the
circumference of the circle, 2�r. The object’s speed, then, is represented
by v � 2�r/T.

If this expression is substituted for v in the equation for centripetal
acceleration, the following equation is obtained.

ac � �
(2�r

r

/T)2
� � �

4

T

�
2

2r
�
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v1

v2

r
a

v1

v2
∆v

FIGURE 7–11 The direction of
the change in velocity is toward
the center of the circle and so
the acceleration vector also
points to the center of the circle.

FIGURE 7–12 When the thrower
lets go, the hammer moves in a
straight line tangent to the point
of release.

a b

Pocket Lab
Target Practice 

Tie a 1.0-m length of string
onto a one-hole rubber stopper.
Note: Everyone in the classroom
should be wearing goggles.
Swing the stopper around your
head in a horizontal circle.
Release the string from your
hand when the string is lined
up with a spot on the wall.
Repeat the experiment until the
stopper flies toward the spot on
the wall.
Analyze and Conclude Did
the stopper travel toward the
spot on the wall? What does
this indicate about the direction
of the velocity compared to the
orientation of the string?



What causes an object to have a centripetal acceleration? There must
be a net force on the object in the direction of the acceleration, toward
the center of the circle. For Earth circling the sun, the force is the sun’s
gravitational force on Earth. When a hammer thrower swings the ham-
mer, as in Figure 7-12, the force is the tension in the chain attached to
the massive ball. When a car turns around a bend, the inward force is
the frictional force of the road on the tires. Sometimes, the necessary net
force that causes centripetal acceleration is called a centripetal force.

This, however, can be misleading. To understand centripetal accelera-
tion, you must identify the agent of the contact or long-range force that
causes the acceleration. Then you can write Newton’s second law for the
component in the direction of the acceleration in the following way.

Newton’s Second Law Fnet � mac

Fnet � �
m

r
v2
�

Fnet � m (�4T

�
2

2r
�)

When solving circular motion problems, choose a coordinate system
in the usual way, with one axis in the direction of the acceleration. But
remember that for circular motion, the direction of the acceleration is
always toward the center of the circle. Rather than labeling this axis x or
y, call it c, for centripetal. The other axis, which, as always, must be per-
pendicular to the first, is in the direction of the velocity, tangent to the
circle. It is labeled tang for tangential. The next Example Problem shows
the labeled coordinate axes.

In the case of the hammer thrower, the purpose of circular motion is
to give the hammer great speed. In what direction does the ball fly when
the thrower releases the chain? Once the contact force of the chain is
gone, there is no force accelerating the ball toward the center of a circle,
so the hammer flies off in the direction of its velocity, which is tangent
to the circle. After release, only gravitational force acts on the ball, and
it moves like any other projectile.
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HELP WANTED
CIVIL ENGINEER
Federal agencies need 
civil engineers to fill posi-
tions as inspectors of
roads, bridges, airports,
and water/waste systems.
An analytical mind, a
bachelor’s degree in civil
engineering, and excellent
communication skills
(oral and written) are
required.

Apply your generalized
training or any special-
ized experience you may
have to a position that
can be an important step
in your professional
career. For information
contact:

American Society of Civil
Engineers
1801 Alexander Bell Drive
Reston, VA 20191-4400

Uniform Circular Motion
A 13-g rubber stopper is attached to a 0.93-m string. The stopper 

is swung in a horizontal circle, making one revolution in 1.18 s. Find
the tension force exerted by the string on the stopper.

Sketch the Problem
• In your sketch, include the radius and the direction of motion.
• Establish a coordinate system labeled tang and c. Show that the 

directions of a and FT are parallel to c. +c

+tang

m
r

FT

a

v2

v1

Example Problem

Continued on next page



Calculate Your Answer
Known: Unknown:

m � 13 g FT � ?

r � 0.93 m

T � 1.18 s

Check Your Answer
• Are the units correct? Performing algebra on the units verifies

that a is in m/s2 and F is in N.
• Do the signs make sense? The signs should all be positive.
• Are the magnitudes realistic? The force is almost three times the

weight of the stopper, but the acceleration is almost three times
that of gravity, so the answer is reasonable.
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14. Consider the following changes to the Example Problem.
a. The mass is doubled, but all other quantities remain the

same. What would be the effect on the velocity, acceleration,
and force?

b. The radius is doubled, but all other quantities remain the
same. What would be the effect on the velocity, acceleration,
and force?

c. The period of revolution is half as large, but all other quanti-
ties remain the same. What would be the effect on the veloci-
ty, acceleration, and force?

15. A runner moving at a speed of 8.8 m/s rounds a bend with a
radius of 25 m.
a. What is the centripetal acceleration of the runner?
b. What agent exerts the force on the runner?

16. Racing on a flat track, a car going 32 m/s rounds a curve 56 m
in radius.
a. What is the car’s centripetal acceleration?
b. What minimum coefficient of static friction between the tires

and road would be needed for the car to round the curve
without slipping?

A Nonexistent Force
If a car in which you are riding stops suddenly, you will be thrown

forward into your seat belt. Is there a forward force on you? No, because
according to Newton’s first law, you will continue moving with the same
velocity unless there is a net force acting on you. The seat belt applies
the force that accelerates you to a stop. Similarly, if a car makes a sharp

Calculations:

ac � 4�2r/T2

ac � 4(3.14)2(0.93 m)/(1.18 s)2 � 26 m/s2

FT � ma � (0.013 kg)(26 m/s2) � 0.34 N

Pocket Lab
Falling Sideways

Will a ball dropped straight down
hit the floor before or after a
ball that is tossed directly side-
ways at the same instant? Try it.
You may need to repeat the
experiment several times before
you are sure of your results.
Toss the ball sideways and not
up or down. 
Analyze and Conclude
Compare the downward force
on each ball. Compare the 
distance that each ball falls in
the vertical direction.

Practice Problems



left turn, a passenger on the right side may be thrown against the right
door. Is there an outward force on the passenger? Figure 7–13 shows
such a car turning to the left as viewed from above. A passenger would
continue to move straight ahead if it were not for the force of the door act-
ing in the direction of the acceleration, that is, toward the center of the cir-
cle. So there is no outward force on the passenger. The so-called centrifu-
gal, or outward force, is a fictitious, nonexistent force. Newton’s laws,
which are used in nonaccelerating frames of reference, can explain
motion in both straight lines and circles.

Changing Circular Motion: Torque
In relation to uniform circular motion, you have considered objects

such as a person on a merry-go-round and a sock spinning in a washing
machine. These can be considered point masses. Now, consider rigid
rotating objects. A rigid rotating object is a mass that rotates around its
own axis. For example, the merry-go-round itself is a rotating object turn-
ing on a central axis. A spinning washing machine tub and a revolving
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How do roller coaster cars stay on the
tracks when they are upside down? The
answer involves the speed of the cars, the
shape of the loop, and the laws of physics
that govern circular motion.

Roller coaster cars try to move in a straight
line, but they are prevented from doing so by
the tracks which force them along a curving
path. Wheels and tracks will remain in con-
tact as long as the forward motion of the 
cars is great enough, and the curvature of 
the tracks is tight enough.

The curving tracks and the forward motion
of the cars combine to create centripetal accel-
eration directed toward the center of the curv-
ing path. The magnitude of the acceleration is
inversely proportional to the radius of the
loop. The smaller the radius, the greater the
acceleration. Forces associated with centripetal
acceleration are measured in units of g. The
greater the g force experienced by a roller

coaster rider, the heavier the rider feels. The
smaller the g force, the lighter the rider feels.
Most of the thrills of roller coaster riding
result from constantly changing g forces.

Most roller coaster loops are shaped like a
teardrop. The upper arc of the loop has a
smaller radius of curvature than the lower arc
and so the acceleration at the top is greater
than at the bottom. The higher acceleration
at the top helps maintain contact between
the wheels and the track. If the high accelera-
tion were maintained everywhere in the loop,
the riders would experience higher g forces
than most people would find comfortable.

Thinking Critically Describe how physics 
influences the careers of roller coaster 
designers. Which of Newton’s laws of motion
explains why the roller coaster car wheels 
and the tracks stay in contact at the top of
the loop? Explain.

Path
of car

Path of
passenger
without car

FIGURE 7–13 The passenger
would move forward in a straight
line if the car did not exert an
inward force.

Looping Roller Coasters



Section Review
1. What is the direction of the force that

acts on the clothes in the spin cycle 
of a washing machine? What exerts
the force?

2. You are sitting on the back seat of a
car that is going around a curve to the
right. Sketch motion and free-body
diagrams to answer the following
questions.

a. What is the direction of your 
acceleration?

b. What is the direction of the net
force acting on you?

c. What exerts that force?

3. Critical Thinking Thanks to Earth’s 
daily rotation, you always move with
uniform circular motion. What sup-
plies the force that accelerates you?
How does this motion affect your
apparent weight?

7.3

door are rotating objects. An ordinary door is also a rigid rotating object,
although it usually rotates only through a portion of a circle.

How do you make a door rotate about its axis of rotation, which is its
hinges? You exert a force. But where? Pushing on the hinges has little
effect, but pushing as far from them as possible starts the door rotating
easily. In what direction should you push? Perpendicular to the door is
effective; pushing toward the hinges is not.

To open the door most easily, you push at a distance from the hinges
(axis of rotation) and in a direction perpendicular to the door. This
information about distance and direction is combined in one concept
called the lever arm. The lever arm in Figure 7–14 is defined as the per-
pendicular distance from the axis of rotation to a line along which the
force acts. The product of the force and the lever arm is called torque.
The greater the torque, the greater the change in rotational motion.
Thus, torque plays the role of force for rotational motion.

Torque can stop, start, or change the direction of rotation. To stop the
door from opening, or to close it, you exert a force in the opposite direc-
tion. To start the lug nuts moving when you are changing a tire, you use
a lug wrench to apply torque. Sometimes additional length is added to
these wrenches to increase the torque.

A seesaw is another example of torque. If a seesaw is balanced, there
is no net torque. How, then, do two children, one small, the other large,
manage to balance? Each child must exert a torque of the same magni-
tude but opposite in direction. Because torque is the product of the lever
arm, d, and the weight of a child, mg, the smaller child must sit farther
from the axis of rotation, or the pivot point. The seesaw will balance
when mAgdA � mBgdB. This concept is the basis for the design of triple
beam balances which you may have used in your science courses.
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FIGURE 7–14 Torque is the
product of the lever arm and 
the applied force.
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7.1 Forces in Two Dimensions
• The force that must be exerted on an

object in order to put it in equilibrium
is called the equilibrant.

• The equilibrant is found by finding the
sum of all forces on an object, then
applying a force with the same magni-
tude but opposite direction.

• An object on an inclined plane has a
component of the force of gravity in 
a direction parallel to the plane; the
component can accelerate the object
down the plane.

7.2 Projectile Motion
• The vertical and horizontal motions 

of a projectile are independent.
• Projectile problems are solved by first

using the vertical motion to relate
height, time in the air, and initial 
vertical velocity. Then the range, the

distance trav-
eled horizon-
tally, is found.

• The range of a
projectile depends upon the accelera-
tion due to gravity and upon both
components of the initial velocity.

7.3 Circular Motion
• An object moving in a circle at constant

speed is accelerating toward the center
of the circle (centripetal acceleration).

• Centripetal acceleration depends directly
on the square of the object’s speed and
inversely on the radius of the circle.

• A force must be exerted in the 
centripetal direction to cause that 
acceleration.

• The torque that changes the velocity of
circular motion is proportional to the
force applied and the lever arm.

Key Terms

7.1
• equilibrant

7.2
• projectile
• trajectory
• maximum

height
• range
• flight time

7.3
• uniform circular

motion
• centripetal

acceleration
• centripetal

force
• rigid rotating

object
• lever arm
• torque

Summary

Reviewing Concepts

CHAPTER 7 REVIEW

Key Equations

7.3

Section 7.1
1. Explain how you would set up a coor-

dinate system for motion on a hill.
2. If your textbook is in equilibrium,

what can you say about the forces 
acting on it?

3. Can an object in equilibrium be 
moving? Explain.

4. What is the sum of three vectors that,
when placed tip to tail, form a trian-
gle? If these vectors represent forces
on an object, what does this imply
about the object?

5. You are asked to analyze the motion
of a book placed on a sloping table.
a. Describe the best coordinate sys-

tem for analyzing the motion.
b. How are the components of the

weight of the book related to the
angle of the table?

6. For the book on the sloping table,
describe what happens to the compo-
nent of the weight force along the
table and the friction force on the
book as you increase the angle the
table makes with the horizontal.

ac � �
v

r

2
� Fnet � mac
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a. Which components of force(s) increase
when the angle increases?

b. Which components of force(s) decrease?

Section 7.2
7. Consider the trajectory of the ball shown in

Figure 7–15.
a. Where is the magnitude of the vertical-velocity

component greatest?
b. Where is the magnitude of the horizontal-

velocity component largest?
c. Where is the vertical velocity smallest?
d. Where is the acceleration smallest?

8. A student is playing with a radio-controlled
race car on the balcony of a sixth-floor apart-
ment. An accidental turn sends the car through
the railing and over the edge of the balcony.
Does the time it takes the car to fall depend
upon the speed it had when it left the balcony?

9. An airplane pilot flying at constant velocity and
altitude drops a heavy crate. Ignoring air resis-
tance, where will the plane be relative to the crate
when the crate hits the ground? Draw the path of
the crate as seen from an observer on the ground.

Section 7.3
10. Can you go around a curve

a. with zero acceleration? Explain
b. with constant acceleration? Explain.

11. To obtain uniform circular motion, how must
the net force depend on the speed of the 
moving object?

12. If you whirl a yo-yo about your head in a hori-
zontal circle, in what direction must a force act
on the yo-yo? What exerts the force?

13. In general, a long-handled wrench removes a
stuck bolt more easily than a short-handled
wrench does. Explain.

Applying Concepts
14. If you are pushing a lawnmower across the grass,

can you increase the horizontal component of
the force you exert on the mower without
increasing the magnitude of the force? Explain.

15. The transmitting tower of a TV station is held
upright by guy wires that extend from the top
of the tower to the ground. The force along the
guy wires can be resolved into two perpendicu-
lar components. Which one is larger?

16. When stretching a tennis net between two
posts, it is relatively easy to pull one end of the
net hard enough to remove most of the slack,
but you need a winch to take the last slack out
of the net to make the top almost completely
horizontal. Why is this true?

17. The weight of a book on an inclined plane can
be resolved into two vector components, one
along the plane, the other perpendicular to it.
a. At what angle are the components equal?
b. At what angle is the parallel component 

equal to zero?
c. At what angle is the parallel component 

equal to the weight?
18. Review projectile motion. Analyze how the hor-

izontal motion can be uniform, while the verti-
cal motion is accelerated. Critique projectile
motion equations presented in this book when
drag due to air is taken into consideration.

19. A batter hits a pop-up straight up over home
plate at an initial velocity of 20 m/s. The ball is
caught by the catcher at the same height that it
was hit. At what velocity does the ball land in
the catcher’s mitt? Neglect air resistance.

20. In baseball, a fastball takes about 1/2 s to reach
the plate. Assuming that such a pitch is thrown
horizontally, compare the distance the ball falls
in the first 1/4 s with the distance it falls in the
second 1/4 s.

21. You throw a rock horizontally. In a second
throw, you gave it even more speed.
a. How would the time it took to hit the 

ground be affected? Neglect air resistance.
b. How would the increased speed affect the 

distance from the edge of the cliff to where 
the stone hit the ground?

22. A zoologist standing on a cliff aims a tranquil-
izer gun at a monkey hanging from a distant
tree branch. The barrel of the gun is horizontal.
Just as the zoologist pulls the trigger, the mon-
key lets go and begins to fall. Will the dart hit
the monkey? Neglect air resistance.

A
B C

D

E

FIGURE 7–15
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23. A quarterback threw a football at 24 m/s at a
45° angle. If it took the ball 3.0 s to reach the
top of its path, how long was it in the air?

24. You are working on improving your perfor-
mance in the long jump and believe that the
information in this chapter can help. Does the
height you reach make any difference? What
does influence the length of your jump?

25. Imagine that you are sitting in a car tossing a
ball straight up into the air.
a. If the car is moving at constant velocity, 

will the ball land in front of, behind, or in
your hand?

b. If the car rounds a curve at constant speed,
where will the ball land?

26. You swing one yo-yo around your head in a
horizontal circle, then you swing another one
with twice the mass, but you don’t change the
length of the string or the period. How do the
tensions in the strings differ?

27. The curves on a race track are banked to make
it easier for cars to go around the curves at high
speed. Draw a free-body diagram of a car on a
banked curve. From the motion diagram, find
the direction of the acceleration.
a. What exerts the force in the direction of 

the acceleration?
b. Can you have such a force without friction?

28. Which is easier for turning a stuck screw, a
screwdriver with a large diameter or one with a
long handle?

29. Some doors have a doorknob in the center
rather than close to the edge. Do these doors
require more or less force to produce the same
torque as a standard door of the same width
and mass?

Problems
Section 7.1
30. An object in equilibrium has three forces exerted

on it. A 33-N force acts at 90° from the 
x-axis and a 44-N force acts at 60°. What are the
magnitude and direction of the third force?

31. A street lamp weighs 150 N. It is supported by
two wires that form an angle of 120° with each
other. The tensions in the wires are equal.

a. What is the tension in each wire?
b. If the angle between the wires is reduced to

90.0°, what is the tension in each wire?
32. A 215-N box is placed on an inclined plane

that makes a 35.0° angle with the horizontal.
Find the component of the weight force 
parallel to the plane’s surface.

33. Five forces act on an object: (1) 60.0 N at 90°,
(2) 40.0 N at 0°, (3) 80.0 N.0 at 270°, 
(4) 40.0 N at 180°, and (5) 50.0 N at 60°
What are the magnitude and direction of a
sixth force that would produce equilibrium?

34. Joe wishes to hang a sign weighing 7.50  � 102 N
so that cable A attached to the store makes a
30.0° angle, as shown in Figure 7–16. Cable B
is horizontal and attached to an adjoining
building. What is the tension in cable B?

35. You pull your 18-kg suitcase at constant speed
on a horizontal floor by exerting a 43-N force
on the handle, which makes an angle � with
the horizontal. The force of friction on the 
suitcase is 27 N.
a. What angle does the handle make with 

the horizontal?
b. What is the normal force on the suitcase?
c. What is the coefficient of friction?

36. You push a 325-N trunk up a 20.0° inclined
plane at a constant velocity by exerting a 
211-N force parallel to the plane’s surface.
a. What is the component of the trunk’s weight 

parallel to the plane?
b. What is the sum of all forces parallel to the 

plane’s surface?
c. What are the magnitude and direction of the 

friction force?
d. What is the coefficient of friction?

A

B

30.0°

FIGURE 7–16
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37. What force must be exerted on the trunk in
problem 36 so that it would slide down the
plane with a constant velocity? In which direc-
tion should the force be exerted?

38. A 2.5-kg block slides down a 25° inclined
plane with constant acceleration. The block
starts from rest at the top. At the bottom, its
velocity is 0.65 m/s. The incline is 1.6 m long.
a. What is the acceleration of the block?
b. What is the coefficient of friction?
c. Does the result of either a or b depend on 

the mass of the block?

Section 7.2
39. You accidentally throw your car keys horizon-

tally at 8.0 m/s from a cliff 64 m high. How far
from the base of the cliff should you look for
the keys?

40. A toy car runs off the edge of a table that is
1.225 m high. If the car lands 0.400 m from
the base of the table,
a. how long did it take the car to fall?
b. how fast was the car going on the table?

41. You take a running leap off a high-diving plat-
form. You were running at 2.8 m/s and hit the
water 2.6 s later. How high was the platform,
and how far from the edge of the platform did
you hit the water? Neglect air resistance.

42. An arrow is shot at 30.0° above the horizontal.
Its velocity is 49 m/s and it hits the target.
a. What is the maximum height the arrow 

will attain?
b. The target is at the height from which the 

arrow was shot. How far away is it?
43. A pitched ball is hit by a batter at a 45° angle

and just clears the outfield fence, 98 m away.
Assume that the fence is at the same height as
the pitch and find the velocity of the ball when
it left the bat. Neglect air resistance.

44. The two baseballs in Figure 7–17 were hit with
the same speed, 25 m/s. Draw separate graphs
of y versus t and x versus t for each ball.

45. An airplane traveling 1001 m above the ocean
at 125 km/h is to drop a box of supplies to
shipwrecked victims below.
a. How many seconds before being directly

overhead should the box be dropped?

b. What is the horizontal distance between 
the plane and the victims when the box 
is dropped?

46. Divers in Acapulco dive from a cliff that is 61 m
high. If the rocks below the cliff extend outward
for 23 m, what is the minimum horizontal
velocity a diver must have to clear the rocks?

47. A dart player throws a dart horizontally at a speed
of 12.4 m/s. The dart hits the board 0.32 m
below the height from which it was thrown.
How far away is the player from the board?

48. A basketball player tries to make a half-court
jump shot, releasing the ball at the height of
the basket. Assuming that the ball is launched
at 51.0°, 14.0 m from the basket, what speed
must the player give the ball?

Section 7.3
49. A 615-kg racing car completes one lap in 14.3 s

around a circular track with a radius of 50.0 m.
The car moves at constant speed.
a. What is the acceleration of the car?
b. What force must the track exert on the tires 

to produce this acceleration?
50. An athlete whirls in a 7.00-kg hammer tied to

the end of a 1.3-m chain in a horizontal circle.
The hammer makes one revolution in 1.0 s.
a. What is the centripetal acceleration of 

the hammer?
b. What is the tension in the chain?

51. A coin is placed on a vinyl stereo record 
making 33 1/3 revolutions per minute.
a. In what direction is the acceleration of 

the coin?
b. Find the magnitude of the acceleration when

the coin is placed 5.0, 10.0, and 15.0 cm
from the center of the record.

xA = xB

yB

yA

A

B

30°

60°

FIGURE 7–17
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c. What force accelerates the coin?
d. In which of the three radii listed in b would 

the coin be most likely to fly off? Why?
52. According to the Guinness Book of World Records

(1990) the highest rotary speed ever attained
was 2010 m/s (4500 mph). The rotating rod
was 15.3 cm (6 in.) long. Assume that the
speed quoted is that of the end of the rod.
a. What is the centripetal acceleration of the 

end of the rod?
b. If you were to attach a 1.0-g object to the 

end of the rod, what force would be needed 
to hold it on the rod?

53. Early skeptics of the idea of a rotating Earth
said that the fast spin of Earth would throw
people at the equator into space. The radius 
of Earth is about 6.38 � 103 km. Show why
this objection is wrong by calculating
a. the speed of a 97-kg person at the equator.
b. the force needed to accelerate the person 

in the circle.
c. the weight of the person.
d. the normal force of Earth on the person, 

that is, the person’s apparent weight.
54. The carnival ride shown in Figure 7–18 has a

2.0-m radius and rotates once each 0.90 s.
a. Find the speed of a rider.
b. Find the centripetal acceleration of a rider.
c. What produces this acceleration?
d. When the floor drops down, riders are held 

up by friction. Draw motion and free-body 
diagrams of the situation.

e. What coefficient of static friction is needed 
to keep the riders from slipping?

55. Friction provides the force needed for a car to
travel around a flat, circular race track. What is

the maximum speed at which a car can safely
travel if the radius of the track is 80.0 m and
the coefficient of friction is 0.40?

Critical Thinking Problems
56. A ball on a light string moves in a vertical circle.

Analyze and describe the motion of this system.
Be sure to consider the effects of gravity and
tension. Is this system in uniform circular
motion? Explain your answer.

57. Consider a roller coaster loop. Are the cars travel-
ing through the loop in uniform circular motion?
Explain. What about the ride in Figure 7–18?

58. A 3-point jump shot is released 2.2 m above 
the ground, 6.02 m from the basket, which is
3.05 m high. For launch angles of 30° and 60°,
find the speed needed to make the basket.

59. For which angle in problem 58 is it more impor-
tant that the player get the speed right? To explore
this question, vary the speed at each angle by 5%
and find the change in the range of the throw.

Going Further
Applying Computers and Calculators Ken 
Griffey, Jr. hits a belt-high (1.0 m) fastball
down the left-field line in Fenway Park. The
ball is hit with an initial velocity of 42.0 m/s 
at 26°. The left-field wall in Fenway Park is
96.0 m from home plate at the foul pole and 
is 14 m high. Write the equation for the height
of the ball, y, as a function of its distance from
home plate, x. Use a computer or graphing 
calculator to plot the path of the ball. Trace
along the path to find how high above the
ground the ball is at the wall. Is it a home run?
a. What is the minimum speed at which the

ball could be hit and clear the wall?
b. If the initial velocity of a ball is 42.0 m/s, 

for what range of angles will the ball go 
over the wall?

CHAPTER 7 REVIEW

FIGURE 7–18

Extra Practice For more 
practice solving problems, go 
to Extra Practice Problems, 
Appendix B.
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